Molecular basis of cooperative DNA bending and oriented heterodimer binding in the NFAT1-Fos-Jun-ARRE2 complex.

نویسندگان

  • R J Diebold
  • N Rajaram
  • D A Leonard
  • T K Kerppola
چکیده

Cooperative DNA binding by transcription factors that bind to separate recognition sites is likely to require bending of intervening sequences and the appropriate orientation of transcription factor binding. We investigated DNA bending in complexes formed by the basic region-leucine zipper domains of Fos and Jun with the DNA binding region of nuclear factor of activated T cells 1 (NFAT1) at composite regulatory elements using gel electrophoretic phasing analysis. The NFAT1-Fos-Jun complex induced a bend at the ARRE2 site that was distinct from the sum of the bends induced by NFAT1 and Fos-Jun separately. We designate this difference DNA bending cooperativity. The bending cooperativity was directed toward the interaction interface between Fos-Jun and NFAT1. We also examined the influence of NFAT1 on the orientation of Fos-Jun heterodimer binding using a novel fluorescence resonance energy transfer assay. The interaction with NFAT1 could reverse the orientation of Fos-Jun heterodimer binding to the ARRE2 site. The principal determinants of both cooperative DNA bending and oriented heterodimer binding were localized to three amino acid residues at the amino-terminal ends of the leucine zippers of Fos and Jun. Consequently, interactions between transcription factors can remodel promoters by altering DNA bending and the orientation of heterodimer binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Fos-Jun-NFAT1 complexes.

Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers ca...

متن کامل

DNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site.

Interactions among transcription factors that bind to separate promoter elements depend on distortion of DNA structure and the appropriate orientation of transcription factor binding to allow juxtaposition of complementary structural motifs. We show that Fos and Jun induce distinct DNA bends at different binding sites, and that heterodimers bind to AP-1 sites in a preferred orientation. Sequenc...

متن کامل

The leucine zipper domain controls the orientation of AP-1 in the NFAT.AP-1.DNA complex.

BACKGROUND Heterologous transcription factors bound to adjacent sites in eukaryotic promoters often exhibit cooperative behavior. In most instances, the molecular basis for this cooperativity is poorly understood. Our efforts have been directed toward elucidation of the mechanism of cooperativity between NFAT and AP-1, two proteins that coordinately direct expression of the T-cell growth factor...

متن کامل

Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains.

The proteins encoded by the proto-oncogenes c-fos and c-jun (Fos and Jun, respectively) form a heterodimeric complex that regulates transcription by interacting with the DNA-regulatory element known as the activator protein 1 (AP-1) binding site. Fos and Jun are members of a family of related transcription factors that dimerize via a leucine zipper structure and interact with DNA through a bipa...

متن کامل

Fos-Jun interaction: mutational analysis of the leucine zipper domain of both proteins.

Jun and Fos oncoproteins form a complex that regulates transcription from promoters containing AP-1 binding sites. The 'leucine zipper' domain of both Fos and Jun is necessary for the formation of the heterodimer, but the role of specific leucine residues is unclear. We have used site-specific mutagenesis to examine the contribution of individual leucine residues to the formation of a stable Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 14  شماره 

صفحات  -

تاریخ انتشار 1998